Subpart 111.51—Coordination of Overcurrent Protective Devices #### §111.51-1 Purpose. The purpose of this subpart is to provide continuity of service for equipment vital to the propulsion, control or safety of the vessel under short-circuit conditions through coordination and selective operation of overcurrent protective devices. # § 111.51-3 Protection of vital equipment. - (a) The coordination of overcurrent protective devices must be demonstrated for all potential plant configurations. - (b)Overcurrent protective devices must be installed so that: - (1) A short-circuit on a circuit that is not vital to the propulsion, control, or safety of the vessel does not trip equipment that is vital; and - (2) A short-circuit on a circuit that is vital to the propulsion, control, or safety of the vessel is cleared only by the protective device that is closest to the point of the short-circuit. [CGD 74–125A, 47 FR 15236, Apr. 8, 1982, as amended by CGD 94–108, 62 FR 23908, May 1, 1997] ### Subpart 111.52—Calculation of Short-Circuit Currents ## §111.52-1 General. The available short-circuit current must be computed— - (a) From the aggregate contribution of all generators that can simultaneously operate in parallel; - (b) From the largest probable motor load; and - (c) With a three phase fault on the load terminals of the protective device. [CGD 74–125A, 47 FR 15236, Apr. 8, 1982, as amended by CGD 94–108, 61 FR 28279, June 4, 1996] # §111.52-3 Systems below 1500 kilowatts. The following short-circuit assumptions must be made for a system with an aggregate generating capacity below 1500 kilowatts, unless detailed computations in accordance with §111.52–5 are submitted: - (a) The maximum short-circuit current of a direct current system must be assumed to be 10 times the aggregate normal rated generator currents plus six times the aggregate normal rated currents of all motors that may be in operation. - (b) The maximum asymmetrical short-circuit current for an alternating current system must be assumed to be 10 times the aggregate normal rated generator currents plus four times the aggregate normal rated currents of all motors that may be in operation. - (c) The average asymmetrical short-circuit current for an alternating-current system must be assumed to be 8½ times the aggregate normal rated generator currents plus 3½ times the aggregate normal rated currents of all motors that may be in operation. ## § 111.52-5 Systems 1500 kilowatts or above. Short-circuit calculations must be submitted for systems with an aggregate generating capacity of 1500 kilowatts or more by utilizing one of the following methods: - (a) Exact calculations using actual impedance and reactance values of system components. - (b) Estimated calculations using NAVSEA DDS 300-2 (incorporated by reference, see 46 CFR 110.10-1). - (c) Estimated calculations using IEC 61363-1 (incorporated by reference; see 46 CFR 110.10-1). - (d) The estimated calculations using a commercially established analysis procedure for utility or industrial applications. [CGD 94–108, 61 FR 28279, June 4, 1996, as amended by USCG–2003–16630, 73 FR 65197, Oct. 31, 2008] ## Subpart 111.53—Fuses #### §111.53-1 General. - (a) Each fuse must- - (1) Meet the general provisions of Article 240 of NFPA NEC 2002 or IEC 60092-202 (both incorporated by reference; see 46 CFR 110.10-1) as appropriate. - (2) Have an interrupting rating sufficient to interrupt the asymmetrical RMS short-circuit current at the point of application; and ### § 111.54-1 - (3) Be listed by an independent laboratory. - (b) Renewable link cartridge-type fuses must not be used. - (c) Each fuse installation must provide for ready access to test the condition of the fuse. [CGD 94-108, 61 FR 28279, June 4, 1996, as amended by 61 FR 33045, June 26, 1996; USCG-2003-16630, 73 FR 65197, Oct. 31, 2008; USCG-2013-0671, 78 FR 60153, Sept. 30, 2013] ## Subpart 111.54—Circuit Breakers #### §111.54-1 Circuit breakers. - (a) Each Circuit breaker must- - (1) Meet the general provision of Article 240 of NFPA NEC 2002 or IEC 60092-202 (both incorporated by reference; see 46 CFR 110.10-1) as appropriate: - (2) Meet subpart 111.55 of this part; and - (3) Have an interrupting rating sufficient to interrupt the maximum asymmetrical short-circuit current available at the point of application. - (b) No molded-case circuitbreaker may be used in any circuit having a nominal voltage of more than 600 volts (1,000 volts for a circuit containing a circuitbreaker manufactured to the standards of the IEC). Each molded-case circuitbreaker must meet section 9 and marine supplement SA of UL 489 (incorporated by reference, see 46 CFR 110.10-1) or part 2 of IEC 60947-2 (incorporated by reference; see §110.10-1), except as noted in paragraph (e) of this section - (c) Each circuitbreaker, other than a molded-case one, that is for use in any of the following systems must meet the following requirements: - (1) An alternating-current system having a nominal voltage of 600 volts or less (1,000 volts for such a system with circuitbreakers manufactured to the standards of the IEC) must meet: - (i) IEEE C37.13 (incorporated by reference; see 46 CFR 110.10-1); - (ii) ANSI/IEEE C37.27 (incorporated by reference; see 46 CFR 110.10-1); or - (iii) IEC 60947-2. - (2) A direct-current system of 3,000 volts or less must meet IEEE C37.14 (incorporated by reference; see 46 CFR 110.10-1) or IEC 60947-2. - (3) An alternating-current system having a nominal voltage greater than 600 volts (or greater than 1,000 volts for IEC standard circuitbreakers) must meet: - (i) IEEE C37.04, IEEE C37.010, and ANSI/IEEE C37.12 (all three standards incorporated by reference; see 46 CFR 110.10-1); or - (ii) IEC 62271-100 (incorporated by reference; see 46 CFR 110.10-1). - (d) A circuit breaker must not: - (1) Be dependent upon mechanical cooling to operate within its rating; or - (2) Have a long-time-delay trip element set above the continuous current rating of the trip element or of the circuit breaker frame - (e) Each circuit breaker located in an engineroom, boilerroom, or machinery space must be calibrated for a 50 degree C ambient temperature. If the circuit breaker is located in an environmentally controlled machinery control room where provisions are made for ensuring an ambient temperature of 40 degree C or less, a circuit breaker must have at least the standard 40 degrees C ambient temperature calibration. [CGD 74-125A, 47 FR 15236, Apr. 8, 1982, as amended by CGD 94-108, 61 FR 28279, June 4, 1996; 61 FR 33045, June 26, 1996; 62 FR 23908, May 1, 1997; USCG-2003-16630, 73 FR 65197, Oct. 31, 2008; USCG-2013-0671, 78 FR 60153, Sept. 30, 20131 #### §111.54-3 Remote control. Remotely controlled circuit breakers must have local manual means of operation. [CGD 81-030, 53 FR 17847, May 18, 1988] ### Subpart 111.55—Switches ## §111.55-1 General. - (a) Each switch must meet Article 404 of NFPA NEC 2002 (incorporated by reference; see 46 CFR 110.10-1). - (b) Each switch that is in the weather must be in a watertight enclosure and be externally operable. [CGD 74–125A, 47 FR 15236, Apr. 8, 1982, as amended by USCG–2003–16630, 73 FR 65198, Oct. 31, 2008] ## §111.55-3 Circuit connections. The load side of each circuit must be connected to the fuse end of a fused-